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ABSTRACT: Artificial mimicry of Ot-helices offers a basis
for development of protein—protein interaction antago-
nists. Here we report a new type of unnatural peptidic
backbone, containing 0.-, 3-, and y-amino acid residues in an
0yaoS0. repeat pattern, for this purpose. This unnatural
hexad has the same number of backbone atoms as a heptad
of o residues. Two-dimensional NMR data clearly establish
the formation of an Q-helix-like conformation in aqueous
solution. The helix formed by our 12-mer a./f3/y-peptide is
considerably more stable than the o-helix formed by an
analogous 14-mer O-peptide, presumably because of the
preorganized f3 and y residues employed.

Unnatural oligomers that can reproduce the three-dimen-
sional (3D) shapes and side-chain projection patterns
characteristic of natural polypeptides offer a basis for rational
development of protein—protein interaction antagonists."
Considerable effort has been devoted to mimicry of individual
helices, which frequently mediate information transfer in bio-
logical systems.” Many alternatives to the ot-helical scaffold
have been examined, including oligomers based on unnatural
peptidic backbones (e.g., B-peptides’) and entirely nonpeptidic
oligomers (e.g., oligophenyls*). Evaluation of these new designs
has typically focused on O-helices two to four turns in length
(e.g., mimicry of the pS3 N-terminal domain in binding to
hDM2,” or mimicry of a BH3 domain in binding to Bcl-2-family
proteins®); however, epitopes of this size can be effectively
mimicked by small molecules.” We have recently shown that the
recognition properties of a 10-turn Q-helix, the CHR domain of
HIV protein gp4l, can be recapitulated with o/3-peptide
oligomers in which two of every seven among the original
o-amino acid residues are replaced by analogous 3-amino acid
residues (Figure 1).8 Oligomers with the oS00 heptad
repeat can adopt a helical secondary structure in which each
turn contains one extra backbone carbon relative to an t-helix.
This backbone alteration confers significant resistance to pro-
teolytic degradation while allowing reasonably good mimicry
of the side-chain projection pattern along one side of the
helix. However, this mimicry is not perfect: the resulting
0./[3-peptides have lower affinity for the target surface than
does the original a-peptide.

Here we introduce a new foldamer design containing a.-, f3-,
and y-amino acid residues in an 0ty0La S hexad repeat pattern,
which is intended to mimic an aooooo0 heptad without
additional backbone atoms (Figure 1a). Both the ot/3/y hexad
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Figure 1. (a) Three backbones that correspond to approximately two
helical turns: aocaoaoa, oSooas, oyaoSo; (b) helical wheels for
the ayaoSa hexad and the ococaoioao heptad.

and the all-o heptad correspond to two helical turns.” The helical
wheel juxtaposition in Figure 1b shows that the olyoo30t repeat
potentially allows a direct correspondence between the o
residues of this hexad and four of the o residues in a standard
peptide heptad. In the parlance of coiled coil-forming sequences,
the common o residues could correspond to positions 4, d, e.
and g of an all-0. heptad repeat, which define a large and
continuous surface that runs along one side of the helix."’

In order to test the at-helix mimicry hypothesis outlined above,
we prepared a./f3/y-peptide 12-mer 1 via solid-phase methods.
All of the o residues in 1 are derived from proteinogenic amino
acids. The helix-forming properties of S-amino acid residues''
and y-amino acid residues'> have been widely studied, and based
on these precedents we employed conformationally preorga-
nized # and y residues that seemed likely to maximize the
propensity of 1 to adopt an a-helix-like conformation (Figure 2).
The f residues are derived from (S,S)-trans-2-aminocyclopenta-
necarboxylic acid (ACPC), which promotes helical a./3-peptide
conformations that strongly resemble the a-helix," including the
gp41 CHR-mimetic oligomers mentioned above.® The y resi-
dues in 1 are derived from Ot-ethyl-cis-2-aminocyclohexaneacetic
acid (EtACHA; 3), which has recently been shown to participate
in helical conformations."*

Received:  March 9, 2011
Published: April 26, 2011

7336 dx.doi.org/10.1021/ja202175a | J. Am. Chem. Soc. 2011, 133, 7336-7339



Journal of the American Chemical Society

COMMUNICATION

ac-E-Z-A-R-X-Y-A-Z-Q-A-X-K-nH, 1
Ac-E-L-E-A-R-Q-Y-A-Orn-Nle-Q-A-F-K-nH, 2
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Figure 2. Sequences for 0./f3/y-peptide 1 and a-peptide 2. Proteino-
genic O residues are indicated with the conventional single-letter code;
for nonproteinogenic @ residues, Orn = ornithine and Nle = norleucine;
the 5 and y residue structures are shown.

B,

HzN\_)— COOH
S

\/
3

The a- and B-amino acid residues of 1 were incorporated via
microwave-assisted solid-phase synthesis employing common
reagents."® Coupling of Fmoc-EtACHA to the growing polypep-
tide proved to be challenging, because of intrinsically limited
reactivity (perhaps resulting from steric hindrance) and a ten-
dency toward epimerization, presumably at the at-position of the
y-amino acid backbone. The best method for addition of Fmoc-
EtACHA proved to be the use of 4 equiv of HOAt and EDClI in
DMF for 6 h at room temperature (no microwave irradiation).

o./f3/y-Peptide 1 is highly water-soluble and displayed suffi-
cient "H NMR resonance dispersion to enable 2D NMR analysis
in aqueous solution (8 mM 1, 9:1 H,0/D,O, 100 mM acetate
buffer, pH 3.8, 10 °C). Resonances from backbone amides and

side chains (6.5—9.0 ppm) were monitored between 0.02 and
14 mM 1; no concentration-dependent variations in chemical
shift were observed, which suggests that 1 does not self-
associate under these conditions. Numerous NOEs were de-
tected between protons on sequentially nonadjacent residues
(i — i+2 or i — i+3; Figure 3a,b), all of which could be
accommodated by a single helical conformation. The expected
alignment of the 3 and y residues along one side of this helix
was indicated by characteristic NOE patterns: EtACHA C,H
(i) — ACPC NH (i+3) and ACPC C4H (i) — EtACHA NH
(i+3). These NOEs between 3 and y residues were detected
even at 50 °C, which implies that the helical conformation of &t/
B/y-peptide 1 is quite robust. Further evidence of a/f3/y-
peptide helix stability was obtained from H/D exchange studies.
When 1 was dissolved in D,O at room temperature, some NH
resonances disappeared completely within 4 min (the backbone
NH of Glu 1 and the side-chain NH resonances of Lys, Arg, and
Gln), but most of the backbone NH resonances could be
detected even after 1 h. a-Peptide 14-mer 2 was prepared for
direct comparison with 1, but the "H NMR spectrum of 2
displayed poor dispersion, which precluded resonance assign-
ments and 2D NMR analysis.

NOE-restrained molecular dynamics calculations for a./f3/
y-peptide 1 in aqueous buffer were carried out with the CNS
program.16 Only i—i+1,i—i+2 and i — i+3 NOEs were used
for these calculations. Good overlap among backbone atoms
was observed for the 10 best among 1000 calculated structures
(rmsd = 0.86 = 0.24 A; Figure 3c). Figure 3d shows superimposition
of the average of these 10 helical structures for 1 on a canonical
a-helix.'” Of particular interest is the overlap between the six
central o residues of 1 and the corresponding residues of the
o-helix (the terminal o residues of 1 were excluded from this
comparison because of expected “fraying” effects). For overlay of
the two sets of six 0t-carbons, rmsd = 0.98 + 0.50 A."® Inspection

(a)

*HoN™ NH,
<«— strong NOE

<--->» medium/weak NOE

'--.'NHV-..,__.-’

Figure 3. (a) Structure of a/3/y-peptide 1 with NOEs observed in aqueous buffer between nonadjacent residues indicated by curved arrows (8 mM
peptide in 100 mM acetate buffer, pH 3.8); (b) NOEs indicated on the o./f3/y-peptide helix wheel; (c) overlay of the 10 best conformations generated
via NOE-restrained dynamics (see text for details); (d) stereoview of the average of the 10 structures from the NOE-strained dynamics simulations (blue

backbone) overlaid on a canonical 0-helix (black backbone).
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Figure 4. Circular dichroism data for a./f3/y-peptide 1 and o.-peptide 2
in 10 mM aqueous acetate buffer, pH 3.8, or 50 vol % aqueous methanol
(one volume of methanol added to the aqueous buffer). The concentra-
tion of peptides is 0.2 mM.

of the stereoview in Figure 3d shows that the Cg-to-side chain
vectors for these two sets of . residues are largely coincident.
We turned to circular dichroism (CD) to compare a./f3/y-
peptide 1 and Q-peptide 2, because the latter could not be
studied via 2D NMR. Figure 4 shows far-UV CD data for 1 and 2
in aqueous buffer and in 50 vol % aqueous methanol. In aqueous
solution, the CD signature of Q-peptide 2 suggests a largely
unfolded state. In the presence of 50 vol % methanol 2 manifests
a typical O-helical CD signature, with minima at ~208 and
~222 nm; the pronounced helix-promoting impact of the
organic cosolvent is typical for short a-peptides. The behavior
of a./f3/y-peptide 1 is quite different in that the CD signature is
not strongly affected by changing the solvent. In both cases a
single strong minimum is observed (~204 nm in aqueous buffer,
~205 nm in aqueous methanol), with only a minor intensity
difference between solvents. Since NMR analysis indicates sub-
stantial population of an O-helix-like conformation by 1 in
aqueous buffer, we assign the CD signature observed for 1 to
this conformation. A similar far-UV CD signature has been
established for a-helix-like conformations adopted by o/f-
peptides;'? it is unclear why these heterogeneous peptidic back-
bones fail to manifest a second minimum in the helical state. The
fact that similar CD signatures are observed for 1 in aqueous
buffer and in 50% aqueous methanol suggests that the a-helix-
like conformation of this 0/f3/y-peptide is highly populated
even in a fully aqueous environment, an extent of folding that
would be unusual for a linear o.-peptide of comparable length.
Further evidence of the high stability of the a/(3/y-peptide 1
helix is provided by variable-temperature CD: the minimum at
~204 nm becomes less intense on heating from 10 to 90 °C, as
expected from thermally induced unfolding, but at 90 °C this
minimum retains ~70% of the intensity observed at 10 °C."
We have introduced a new type of heterogeneous peptidic
foldamer and shown via 2D NMR that this system supports a
helical conformation in aqueous solution. The oty S0 hexad
pattern we designed leads to mimicry of the side-chain display
along one side of an O-helix, despite the presence of nonprotei-
nogenic backbone components. Direct comparison with a con-
ventional t-peptide reveals that the 0./3/y-peptide has a much
stronger folding propensity, a feature that should facilitate the

development of biologically active examples. The high stability of
the new a/f3/y-peptide helix is attributed to the use of appro-
priately preorganized f and y residues. Additional studies will be
required to determine whether other aoLaoi+3+7y hexads with
different subunit ordering give rise to stable helical conforma-
tions. To our knowledge, this study represents the first example
of high-resolution structural analysis of a y-amino acid-contain-
ing foldamer in aqueous solution. It will now be important to
determine whether the o/3/y-peptide design introduced here
can support functional mimicry of biological at-helices.
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